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1 Introduction

Recently there has been a substantial progress towards solving the finite-size spectral prob-

lem of the AdS/CFT correspondence [1]. First, a perturbative approach due to Lüscher has

been generalized to the case of the non-Lorentz invariant light-cone string sigma model on

AdS5 × S5 and further applied to find the four- and five-loop anomalous dimensions of the

Konishi operator [2, 3]; the four-loop result exhibits a remarkable agreement with the direct

field-theoretic computation [4, 5]. Second, the TBA approach [6] based on the so-called

AdS5×S5 mirror model [7] has been advanced as a mean to determine the exact string spec-

trum.1 In particular, the TBA equations for the ground state of the light-cone superstring

were derived in [9]–[12]. Another important tool for studying the finite-size spectral prob-

lem, namely, the so-called Y-system has been proposed in [13], and its general solution has

been constructed in [14]. Upon specifying an analytic behavior, solutions of the Y-system

should also describe the excited states of the model. Comparison of the TBA equations

to those of the Y-system [10] reveals intricate analytic properties of the latter indicating

that, in contrast to relativistic models, the corresponding Y-system should be defined on

an infinite genus Riemann surface [15]. Finally, we point out that in the work [12] integral

(TBA-like) equations for excited states in the sl(2) sector have been suggested along the

lines of [2, 16–18] and they were further used in [19] to compute numerically an all-loop

anomalous dimension supposedly corresponding to one of the descendents of the Konishi

operator. The subleading at strong coupling λ−1/4-term found from this computation dis-

agrees however with the result by [20] and the origin of this disagreement remains unclear

for the moment. Some important subtleties concerning the non-analytic behavior of the

asymptotic string energies at strong coupling have been pointed out in the recent work [21].

1The importance of the TBA approach in the AdS/CFT spectral problem was stressed in [8] where it

was used to explain wrapping effects in gauge theory.
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Needless to say that the TBA/Y-system equations proposed above have a number

of unusual features which call for a deeper understanding of their structure and analytic

properties. In this note we will make a further step in simplifying the TBA equations which

follow from the corresponding string hypothesis [9] by using the canonical procedure [22].

We recall that the Y-system is obtained from the canonical TBA equations by acting on

the latter with the discrete Laplace operator ∆MN , where M,M = 1, . . . ,∞. The Laplace

operator has the following representation ∆MN = (K+1)−1
MN ⋆s−1, where K+1 is a certain

invertible operator and s−1 is an operator which has a null space, i.e. in general f ⋆s−1⋆s 6=
f . The fist simplification of the canonical TBA system occurs when acting on it with K+1,

because it brings most of the TBA equations to the local form, see [10] for details.

There are further simplifications we point out in this note. The first one concerns the

infinite sums involving the Y-function YM |vw and YM |w for the so-called M |vw- and M |w-

strings [10]. These infinite sums occur in some of the TBA equations and they are difficult

for numerical studies due to their rather slow convergence properties. We show that by

using certain identities between the TBA kernels these sums can be removed in favor of infi-

nite sums involving YQ-functions only, the latter have much better convergence properties.

The second simplification concerns the main TBA equation for the Q-particles which in-

volves the contribution of the dressing phase [23]. This phase is nothing else but the BES ex-

pression [24] analytically continued to the kinematic region of the mirror theory [7]. In [25]

we have obtained a convenient integral representation for this analytic continuation start-

ing from the DHM representation [26] valid in the kinematic region of the original string

theory. Here we will work out explicitly the action of the operator (K +1)−1 on the mirror

dressing phase given by this integral representation and find a very simple final expression.

We believe that the simplification procedure developed here can also be applied to

the integral equations describing the excited states, although there are new important

subtleties related to singularities of certain Y-functions that should be taken into account.

The note is organized as follows. In the next section we present the main result on the

simplified TBA equations. The interested reader can find the details of our derivation in

two appendices.

2 Simplified TBA equations

We recall [10] that the spectrum of the mirror model in the thermodynamic limit contains

Q-particles with pseudo-energy ǫQ, two copies of M |w- and M |vw-strings with pseudo-

energies ǫ
(α)
M |w and ǫ

(α)
M |vw, where α = 1, 2, and, finally, two copies of y±-particles, whose

pseudo-energies ǫ
(α)
y± are supported on the interval [−2, 2] of the rapidity variable u. The

pseudo-energies and densities for all the other particles are defined for all real values of u. It

is convenient to introduce so-called Y-functions which are related to the pseudo-energies as

YQ = e−ǫQ , Y
(α)
M |vw = e

ǫ
(α)
M|vw , Y

(α)
M |w = e

ǫ
(α)
M|w , Y

(α)
± = e

ǫ
(α)

y± , α = 1, 2 . (2.1)

By using the integral representation for the mirror model dressing factor [25], the

partially simplified set of the TBA equations obtained in [10] can be brought to the form

– 2 –
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• M |w-strings: M ≥ 1 , Y
(α)
0|w = 0

log Y
(α)
M |w = log(1 + Y

(α)
M−1|w)(1 + Y

(α)
M+1|w) ⋆ s + δM1 log

1 − eihα

Y
(α)
−

1 − eihα

Y
(α)
+

⋆ s (2.2)

• M |vw-strings: M ≥ 1 , Y
(α)
0|vw = 0

log Y
(α)
M |vw = log(1 + Y

(α)
M−1|vw)(1 + Y

(α)
M+1|vw) ⋆ s (2.3)

− log(1 + YM+1) ⋆ s + δM1 log
1 − e−ihαY

(α)
−

1 − e−ihαY
(α)
+

⋆ s

• y-particles

log Y
(α)
± = − log (1 + YQ) ⋆ KQy

± + log

1 + 1

Y
(α)
M|vw

1 + 1

Y
(α)
M|w

⋆ KM (2.4)

• Q-particles for Q ≥ 2

log YQ = log

(
1 + 1

Y
(1)
Q−1|vw

)(
1 + 1

Y
(2)
Q−1|vw

)

(1 + 1
YQ−1

)(1 + 1
YQ+1

)
⋆ s (2.5)

• Q = 1-particle

log Y1 = log

(
1 − eih1

Y
(1)
−

)(
1 − eih2

Y
(2)
−

)

1 + 1
Y2

⋆ s − ∆̌ ⋆ s , (2.6)

where

∆̌ = L Ě + log

(
1 − eih1

Y
(1)
−

)(
1 − eih2

Y
(2)
−

)(
1 − eih1

Y
(1)
+

)(
1 − eih2

Y
(2)
+

)
⋆ Ǩ (2.7)

+ log


1 +

1

Y
(1)
M |vw




1 +

1

Y
(2)
M |vw


 ⋆ ǨM + 2 log (1 + YQ) ⋆ ǨΣ

Q .

Let us stress that in the convolutions involving Y
(α)
± -functions one has to integrate over

the interval [−2, 2]. In eq. (2.7) L coincides with the light-cone momentum P+ of the

AdS5 ×S5 string theory in the light-cone gauge, which is simultaneously the circumference

of a cylinder on which the corresponding string sigma model is defined. In this paper we

consider only the a = 0 light-cone gauge (or temporal gauge) [27, 28] where L = J , and

J is one of the SO(6) charges carried by the string. Also, hα = (−1)αh, where h can be

thought of as the chemical potential for fermionic particles.

– 3 –
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The energy of the ground state of the light-cone gauge-fixed string theory on AdS5×S5

defined on a cylinder of circumference L is expressed through the Y-functions which solve

the TBA equations as follows

Eh(L) = −
∫

du

∞∑

Q=1

1

2π

dp̃Q

du
log (1 + YQ) . (2.8)

Equations above involve convolutions with a number of kernels which we specify in

appendix A.

The TBA equations (2.4) for y±-particles contain the infinite sum involving the Y-

functions for vw- and w-strings. It can be replaced by a sum of terms which only involve

Y
(α)
1|vw, Y

(α)
1|w and YQ by using the following formula derived in [10]

log

1 + 1

Y
(α)
M|vw

1 + 1

Y
(α)
M|w

⋆ KM = log
1 + Y

(α)
1|vw

1 + Y
(α)
1|w

⋆ s (2.9)

+ log(1 + YQ+1) ⋆ s ⋆ KQ + log(1 + YQ) ⋆ KQy ⋆ s ⋆ K1 .

Since YQ-functions decrease very fast for large Q, the formula (2.9) seems to be useful for

numerical studies of the TBA equations. Let us also mention that the last sum in eq. (2.9)

can be expressed in terms of Y±-functions by using the formula that follows from eq. (2.4)

log(1 + YQ) ⋆ KQy = log
Y

(α)
+

Y
(α)
−

=
1

2
log

Y
(1)
+

Y
(1)
−

Y
(2)
+

Y
(2)
−

, α = 1, 2 . (2.10)

The kernel ǨΣ
Q corresponding to the improved dressing factor is worked out in appendix

B. It has the following representation

ǨΣ
Q = −KQy ⋆ Ǐ0 + ǏQ ,

where ǏQ is given by eq. (B.36). Due to this representation of ǨΣ
Q, the formula (2.10) can

be also used to partially exclude the infinite contribution of Q-particles in eq. (2.7) in favor

of the y-particles.

Finally, ∆̌ in the TBA equation (2.6) contains another infinite sum involving the Y-

functions for vw-strings. This sum can be expressed in terms of YQ-functions only by using

the following identity that holds outside the interval [−2, 2]

log


1 +

1

Y
(1)
M |vw




1 +

1

Y
(2)
M |vw


 ⋆ ǨM = log (1 + YQ) (1 + YQ+2) ⋆ ǨQ (2.11)

+ log Y2 + 2 log Y2 ⋆ Ǩ − log Y1 ⋆ Ǩ1 ,

where both sums in the left and the right hand side are from 1 to ∞. Note also that at

large L the r.h.s. of (2.11) is finite because Ẽ2 + 2Ẽ2 ⋆ Ǩ − Ẽ1 ⋆ Ǩ1 = 0, and we recall that

in the term Ẽ2 ⋆ Ǩ one integrates over the interval [−2, 2]. In fact for the ground state the

– 4 –
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l.h.s. of (2.11) goes to 0 in the large L limit [15], and it can be also easily seen from the

r.h.s. of (2.11) by using that 1 ⋆ Ǩ = −1
2

(
θ(−u − 2) + θ(u + 2)

)
and 1 ⋆ ǨM = 0.

To prove this formula, one should use eq. (2.5), and the following identities which hold

for |v| > 2

s ⋆
(
ǨQ−1 + ǨQ+1

)
= ǨQ , Q = 2, 3, · · · ,∞ , (2.12)

s ⋆ Ǩ2 = Ǩ1 − s − 2s ⋆ Ǩ = Ǩ1(u, v) − s(u − v) − 2

∫ 2

−2
dt s(u − t)Ǩ(t − v) . (2.13)

As the result of these simplifications the quantity ∆̌ in eq. (2.7) can be written in the

form

∆̌ = L Ě + log

(
1 − eih1

Y
(1)
−

)(
1 − eih2

Y
(2)
−

)(
1 − eih1

Y
(1)
+

)(
1 − eih2

Y
(2)
+

)
⋆ Ǩ (2.14)

+ log Y2 + 2 log Y2 ⋆ Ǩ − log Y1 ⋆ Ǩ1 + log (1 + YQ) ⋆
(
2ǨΣ

Q + ǨQ + ǨQ−2

)
.

To recall, in the last formula the sums over Q run from 1 to ∞, the convolutions involving

Ǩ are taken over the interval [−2, 2], and we use the convention Ǩ−1 = Ǩ0 = 0.

Thus, eqs. (2.9) and (2.11) allow one to exclude from all the TBA equations the infinite

sums involving the functions Y
(α)
M |vw and Y

(α)
M |w. The resulting set of equations is well-suited

for both analytic and numerical studies. In particular, one could analyze the behavior of

the energy (2.8) as a function of the complexified length L or coupling constant g.
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A Kernels

All kernels and S-matrices we are using are expressed in terms of the function x(u)

x(u) =
1

2

(
u − i

√
4 − u2

)
, Im x(u) < 0 , (A.1)

which maps the u-plane with the cuts [−∞,−2] ∪ [2,∞] onto the physical region of the

mirror theory, and the function xs(u)

xs(u) =
u

2

(
1 +

√
1 − 4

u2

)
, |xs(u)| ≥ 1 , (A.2)

which maps the u-plane with the cut [−2, 2] onto the physical region of the string theory.

– 5 –
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The momentum p̃Q and the energy ẼQ of a mirror Q-particle are expressed in terms

of x(u) as follows

p̃Q = gx

(
u − i

g
Q

)
− gx

(
u +

i

g
Q

)
+ iQ , ẼQ = log

x
(
u − i

gQ
)

x
(
u + i

gQ
) . (A.3)

The TBA equations discussed in section 2 involve convolutions with a number of kernels

which we specify below, see also [10] for more details and the definition of the convolutions.

First, all the TBA equations contain the following universal kernels

s(u) =
1

2πi

d

du
log S(u) =

g

4 cosh πgu
2

, S(u) = tanh[
π

4
(ug − i)] , (A.4)

KQ(u) =
1

2πi

d

du
log SQ(u) =

1

π

g Q

Q2 + g2u2
, SQ(u) =

u − iQ
g

u + iQ
g

, (A.5)

which appear in TBA equations of any integrable model. Note that the kernel KQ has an

interesting group property

KQ ⋆ KQ′ = KQ′ ⋆ KQ = KQ+Q′ ,

where the integrals in the convolution are taken from −∞ to +∞.

Then, the kernels KQy
± are related to the scattering matrices SQy

± of Q- and y±-particles

in the usual way

KQy
− (u, v) =

1

2πi

d

du
log SQy

− (u, v) , SQy
− (u, v) =

x(u − iQ
g ) − x(v)

x(u + iQ
g ) − x(v)

√√√√x(u + iQ
g )

x(u − iQ
g )

,

KQy
+ (u, v) =

1

2πi

d

du
log SQy

+ (u, v) , SQy
+ (u, v) =

x(u − iQ
g ) − 1

x(v)

x(u + iQ
g ) − 1

x(v)

√√√√x(u + iQ
g )

x(u − iQ
g )

.

(A.6)

These kernels can be expressed in terms of the kernel KQ, and the kernel

K(u, v) =
1

2πi

d

du
log

(
x(u) − x(v)

x(u) − 1/x(v)

)
=

1

2πi

√
4 − v2

√
4 − u2

1

u − v
, (A.7)

as follows

KQy
∓ (u, v) =

1

2

(
KQ(u − v) ± KQy(u, v)

)
, (A.8)

where KQy is given by

KQy(u, v) = K

(
u − i

g
Q, v

)
− K

(
u +

i

g
Q, v

)
. (A.9)

Next, we introduce the following kernel

K̄(u, v) =
1

2πi

d

du
log

(
x(u) − xs(v)

x(u) − 1/xs(v)

)
=

1

2π

√
1 − 4

v2

√
4 − u2

v

u − v
, (A.10)

– 6 –
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This kernel (A.10) can be thought of as an analytic continuation of K(u, v) from the mirror

theory v-plane to the string theory one. With the help of this kernel we can now define2

Ǩ(u, v) = K̄(u, v)
[
θ(−v − 2) + θ(v − 2)

]
, (A.11)

ǨQ(u, v) =

[
K̄

(
u +

i

g
Q, v

)
+ K̄

(
u − i

g
Q, v

)][
θ(−v − 2) + θ(v − 2)

]
, (A.12)

where θ(u) is the standard unit step function. Obviously, both Ǩ and ǨQ vanish for v

being in the interval (−2, 2) and are equal to (twice) the jump discontinuity of the kernels

K and KQy across the real semi-lines |v| > 2.

The quantity Ě is defined as

Ě(u) = log
x(u − i0)

x(u + i0)
= 2 log |xs(u)| 6= 0 for |u| > 2 . (A.13)

Finally, eq. (2.6) involves the kernel

ǨΣ
Q =

1

2πi

∂

∂u
log Σ̌Q = −KQy ⋆ Ǐ0 + ǏQ (A.14)

where

ǏQ =
∞∑

n=1

Ǩ2n+Q(u, v) = K
[Q+2]
Γ (u − v) + 2

∫ 2

−2
dt K

[Q+2]
Γ (u − t)Ǩ(t, v) , (A.15)

K
[Q]
Γ (u) =

1

2πi

d

du
log

Γ
[Q

2 − i
2gu
]

Γ
[Q

2 + i
2gu
] =

gγ

2π
+

∞∑

n=1

(
K2n+Q−2(u) − g

2πn

)
. (A.16)

The kernel (A.14) is related to the dressing kernel

KΣ
QQ′(u, u′) =

1

2πi

d

du
log ΣQQ′(u, u′) , (A.17)

where ΣQQ′(u, v) is the improved dressing factor [25] obtained by fusing the sl(2) S-matrices

for individual constituents of the bound states in the mirror theory. The relation is given by

ǨΣ
Q(u, v) = KΣ

Q1

(
u, v +

i

g
− i0

)
+ KΣ

Q1

(
u, v − i

g
+ i0

)
− KΣ

Q2(u, v) , (A.18)

and will be proven in the next section.

B Simplifying the dressing kernel contribution

B.1 Φ and Ψ functions

Below we present the functions Φ and Ψ used to represent the dressing phase in the

kinematic region of the mirror theory

Φ(x1, x2) = i

∮
dw1

2πi

∮
dw2

2πi

1

(w1 − x1)(w2 − x2)
I(w1, w2) , (B.1)

Ψ(x1, x2) = i

∮
dw

2πi

1

w − x2
I(x1, w) , (B.2)

2The definitions of the kernels Ǩ and ǨQ differ by the sign from the ones used in [10].

– 7 –
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where

I(w1, w2) = log
Γ
[
1 + i

2g
(
w1 + 1

w1
− w2 − 1

w2

)]

Γ
[
1 − i

2g
(
w1 + 1

w1
− w2 − 1

w2

)] (B.3)

and the integrals are over the unit circles. Both functions are discontinuous through the unit

circle. Considering Ψ(x1, x2) as a function of the rapidity variable u through x1 ≡ x(u),

where x(u) is given by eq. (A.1), it has an infinite number of cuts located at u ± 2i
g n,

−2 ≤ u ≤ 2 and n = 1, 2,∞. Both Φ and Ψ are discontinuous when x1 or x2 for Φ and x2

for Ψ crosses the unit circle. The corresponding jump discontinuities are given in [25].

B.2 Improved dressing factor

As we have shown in our recent work [25], the improved dressing factor in the kinematic

region of the mirror theory does not depend on the internal structure of a bound state

employed in the fusion procedure. Also, a convenient integral representation for this factor

has been found in [25], namely

1

i
log ΣQQ′(y1, y2) = Φ(y+

1 , y+
2 ) − Φ(y+

1 , y−2 ) − Φ(y−1 , y+
2 ) + Φ(y−1 , y−2 )

− 1

2

(
Ψ(y+

1 , y+
2 ) + Ψ(y−1 , y+

2 ) − Ψ(y+
1 , y−2 ) − Ψ(y−1 , y−2 )

)

+
1

2

(
Ψ(y+

2 , y+
1 ) + Ψ(y−2 , y+

1 ) − Ψ(y+
2 , y−1 ) − Ψ(y−2 , y−1 )

)

+
1

i
log

iQ Γ
[
Q′ − i

2g
(
y+
1 + 1

y+
1

− y+
2 − 1

y+
2

)]

iQ
′
Γ
[
Q + i

2g
(
y+
1 + 1

y+
1

− y+
2 − 1

y+
2

)]
1 − 1

y+
1 y−

2

1 − 1
y−
1 y+

2

√
y+
1 y−2

y−1 y+
2

.

(B.4)

Here y±1,2 are parameters of Q and Q′-particle bound states in the mirror theory. The

bound state parameters read as

y+
1 = x

(
u +

i

g
Q

)
, y−1 = x

(
u − i

g
Q

)
, (B.5)

y+
2 = x

(
u′ +

i

g
Q′

)
, y−2 = x

(
u′ − i

g
Q′

)
(B.6)

In the next subsection we will use this integral representation for the dressing kernel to-

gether with the properties of other kernels involved in the TBA equation to simplify the

dressing kernel contribution to the TBA equation (2.6) which contains this kernel.

B.3 Computing ǨΣ
Q

In [10] we have conjectured the following relation

KΣ
QQ′ ⋆ (K + 1)−1

Q′Q′′

?
= δ1Q′′ǨΣ

Q ⋆ s , (B.7)

where the kernel ǨΣ
Q(u, v) is supposed to vanish for |v| < 2. With an explicit expres-

sion (B.4) for the dressing kernel at hand, we can now verify this conjecture and find ǨΣ
Q.
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Denote by ∆Q′Q′′ the discrete Laplace operator

∆Q′Q′′ ≡ (K + 1)−1
Q′Q′′ ⋆ s−1 = δQ′Q′′s−1 − (δQ′+1,Q′′ + δQ′−1,Q′′) . (B.8)

For Q′′ = 1 this is not anymore the Laplace operator, but we continue to use the same

notation, i.e.,

∆Q′1 ≡ (K + 1)−1
Q′1 ⋆ s−1 = δQ′ 1s

−1 − δQ′2 . (B.9)

As was shown in [25], the improved dressing factor is a holomorphic function of its ar-

guments in the intersection of the region {|y+
1,2| < 1, |y−1,2| > 1} with the mirror region

Im y±i < 0, which includes the real momentum line of the mirror theory. This immediately

implies that

KΣ
QQ′ ⋆ ∆Q′Q′′ = 0 for Q′′ 6= 1. (B.10)

Now we consider 1
i log ΣQQ′ ⋆ ∆Q′1. We have to distinguished two cases, |v| < 2 and

|v| > 2. We start with the first case.

Case I: |v| < 2.

The formula (B.4) contains four lines which contributions we will work out separately. The

computation proceeds as follows

Φ(y+
1 , y+

2 ) ⋆ ∆Q′1 = Φ

[
y+
1 , x

(
v +

i

g
Q′

)]
⋆ ∆Q′1 = (B.11)

Φ

[
y+
1 , x

(
v +

2i

g
− i0

)]
+ Φ

[
y+
1 , x(v + i0)

]
− Φ

[
y+
1 , x

(
v +

2i

g

)]
= Φ

[
y+
1 , x(v + i0)

]
.

Thus, for the difference of two Φ-functions with the same first argument, we find
(
Φ(y+

1 , y+
2 ) − Φ(y+

1 , y−2 )
)

⋆ ∆Q′1 = Φ
[
y+
1 , x(v + i0)

]
− Φ

[
y+
1 , x(v − i0)

]
.

According to the formula (A.1), x(v) has the property that |x(v + iy)| < 1 and

|x(v − iy)| > 1, where v is real and Im y > 0. Thus, the expression above equals to the

jump discontinuity of the Φ-function through the unit circle. It is given by
(
Φ(y+

1 , y+
2 ) − Φ(y+

1 , y−2 )
)

⋆ ∆Q′1 = −Ψ(x(v), y+
1 ) . (B.12)

Proceeding in the similar manner, we obtain the contribution of the first line in eq. (B.4):
(
Φ(y+

1 , y+
2 ) − Φ(y+

1 , y−2 ) − Φ(y−1 , y+
2 ) + Φ(y−1 , y−2 )

)
⋆ ∆Q′1 = (B.13)

= Ψ(x(v), y−1 ) − Ψ(x(v), y+
1 ) .

Contribution of the second line in eq. (B.4) is computed exactly in the same fashion as of

the first one. One should use this time the formula of [10] for the jump discontinuity of

the Ψ-function, when its second argument crosses the unit circle. As a net result, we find

−1

2

(
Ψ(y+

1 , y+
2 ) + Ψ(y−1 , y+

2 ) − Ψ(y+
1 , y−2 ) − Ψ(y−1 , y−2 )

)
⋆ ∆Q′1 = (B.14)

= − 1

2i
log

u − v + i
gQ

u − v − i
gQ

− 1

i
log iQ

Γ
[Q

2 − i
2g(u − v)

]

Γ
[Q

2 + i
2g(u − v)

] .

– 9 –
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The contribution of the third line in eq. (B.4) is a bit more tricky to figure out. The

point is that the action of the second term in the operator ∆Q′1 puts the second argument

of the function Ψ precisely on the cut of the latter located at v + 2i
g . Therefore, to proceed,

we have to specify which value of Ψ we utilize — ether the one on to the upper edge of

the cut v + 2i
g + i0 or the one on the lower edge v + 2i

g − i0. Of course, the prescription

should be fixed in the universal manner for all the Ψ-functions appearing in the third line

of eq. (B.4).

It turns out, quite remarkably, that the net result does not depend on which prescrip-

tion is used. As soon as a choice is made, the action of ∆Q′1 reduces to evaluation of the

jump discontinuity of Ψ through the cut, which has been already done in [25]. We spear

the details of the computation presenting only the final result

1

2

(
Ψ(y+

2 , y+
1 ) + Ψ(y−2 , y+

1 ) − Ψ(y+
2 , y−1 ) − Ψ(y−2 , y−1 )

)
⋆ ∆Q′1 = (B.15)

= Ψ(x(v), y+
1 ) − Ψ(x(v), y−1 ) +

1

2i
log

y+
1 − x(v)

y+
1 − 1

x(v)

y−1 − 1
x(v)

y−1 − x(v)
.

The last term here can be also represented in the following form

1

2i
log

y+
1 − x(v)

y+
1 − 1

x(v)

y−1 − 1
x(v)

y−1 − x(v)
= −1

i
log

y+
1 − 1

x(v)

y−1 − 1
x(v)

√
y−1
y+
1

+
1

2i
log

u − v + i
gQ

u − v − i
gQ

. (B.16)

Finally, contribution of the forth line in eq. (B.4) is straightforward to find

1

i
log

iQ Γ
[
Q′ − i

2g
(
y+
1 + 1

y+
1

− y+
2 − 1

y+
2

)]

iQ′Γ
[
Q + i

2g
(
y+
1 + 1

y+
1

− y+
2 − 1

y+
2

)]
1 − 1

y+
1 y−

2

1 − 1
y−
1 y+

2

√
y+
1 y−2

y−1 y+
2

⋆ ∆Q′1 =

=
1

i
log iQ

Γ
[Q

2 − i
2g(u − v)

]

Γ
[Q

2 + i
2g(u − v)

] +
1

i
log

y+
1 − 1

x(v)

y−1 − 1
x(v)

√
y−1
y+
1

. (B.17)

Summing up all the contributions, we find zero, i.e.

log Σ̌Q(u, v) ≡ log ΣQQ′(y1, y2) ⋆ ∆Q′1 = 0 for v ∈ (−2, 2) .

Now we turn to the second case.

Case II: |v| > 2.

In what follows we introduce the concise notation x ≡ x(v− i0) which represents the (real)

value of x on the lower edge of the cut ]−∞,−2]∪ [2,∞[. The value on the upper edge is

then x(v + i0) = 1/x(v − i0). Further, the function x can be conveniently represented as

x =
1

2

(
v +

√
v2 − 4

)
θ(v − 2) +

1

2

(
v −

√
v2 − 4

)
θ(−v − 2) .

– 10 –
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Evaluation of the action of ∆Q′1 on log ΣQQ′(y1, y2) does not contain any subtlety and we

quote here the corresponding result

1

i
log Σ̌Q(u, v) =

1

i
log ΣQQ′(y1, y2) ⋆ ∆Q′1 =

= Φ(y−1 , x) − Φ

(
y−1 ,

1

x

)
− Φ(y+

1 , x) + Φ

(
y+
1 ,

1

x

)

+
1

2

(
Ψ(y−1 , x) − Ψ

(
y−1 ,

1

x

)
+ Ψ(y+

1 , x) − Ψ

(
y+
1 ,

1

x

))

+ Ψ(x, y+
1 ) − Ψ(x, y−1 )

+
1

i
log iQ

Γ
[Q

2 − i
2g(u − v)

]

Γ
[Q

2 + i
2g(u − v)

] +
1

i
log

y+
1 − 1

x

y−1 − x

√
x2

y−1
y+
1

.

(B.18)

Applying the derivative 1
2π

d
du to the last formula, yields the kernel ǨΣ

Q for |v| > 2.

It appears that the dressing kernel ǨΣ
Q = 1

2πi
d
du log Σ̌Q has a nice representation in

terms of simpler kernels appearing in the TBA equations. To find it, we first note that

since all the kernels, except for the dressing one, are defined on the (part of) real u-line, it

is natural to transform the integration contours (circles) in the integrals entering eq. (B.18)

into the interval [−2, 2]. This is easily done by noting that for an arbitrary function f(w)

on a circle, w = eiθ, such that f(w) = f(1/w) one has

∫
dw

2πi

1

w − x
f(w) =

∫ 2

−2

dz

2π

1√
4 − z2

2 − zx

x
[
x + 1

x − z
]f(z) . (B.19)

This formula, in conjunction with the identity

(1 − x(v)2)/x(v) = −
√

v2 − 4
[
θ(v − 2) − θ(−v − 2)

]

and the following properties of KQy

KQy(u, 2) = KQy(u,−2) = 0 , (B.20)

allows one to derive the following formula

∂

∂u

[
Φ(y−1 , x) − Φ

(
y−1 ,

1

x

)
− Φ(y+

1 , x) + Φ

(
y+
1 ,

1

x

)]
= (B.21)

= ± i

π

∫ 2

−2
dt1

dt2√
4 − t22

KQy(u, t1)

√
v2 − 4

t2 − v

d

dt1
log

Γ
[
1 − i

2g(t1 − t2)
]

Γ
[
1 + i

2g(t1 − t2)
] ,

where an overall “ + ” sign is for v > 2 and “ − ” for v < −2, respectively. With the help

of the kernel (A.16) the formula (B.21) can be written as the double convolution

1

2π

∂

∂u

[
Φ(y−1 , x) − Φ

(
y−1 ,

1

x

)
− Φ(y+

1 , x) + Φ

(
y−1 ,

1

x

)]
= −2KQy ⋆ K

[2]
Γ ⋆ Ǩ , (B.22)

where both integrations are taken over the interval [−2, 2].
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Now we investigate the second line of eq. (B.18). Performing the same steps as above,

we find the following identity

∆Ψ ≡ 1

2

(
Ψ(y−1 , x) − Ψ

(
y−1 ,

1

x

)
+ Ψ(y+

1 , x) − Ψ

(
y+
1 ,

1

x

))
(B.23)

= ± 1

2πi

∫ 2

−2

dt√
4 − t2

√
v2 − 4

t − v
log

Γ
[
1 + Q

2 − i
2g(u − t)

]

Γ
[
1 + Q

2 + i
2g(u − t)

]
Γ
[
1 − Q

2 − i
2g(u − t)

]

Γ
[
1 − Q

2 + i
2g(u − t)

] ,

where again an overall “ + ” sign is for v > 2 and “ − ” for v < −2, respectively. One

further finds that

1

2πi

d

du
log

Γ
[
1 + Q

2 − i
2gu
]

Γ
[
1 + Q

2 + i
2gu
]
Γ
[
1 − Q

2 − i
2gu
]

Γ
[
1 − Q

2 + i
2gu
] = K

[Q+2]
Γ + K

[Q]
Γ . (B.24)

Furthermore,3

K
[Q+2]
Γ = K

[Q]
Γ − KQ . (B.25)

Therefore, the contribution corresponding to the second line takes the form

1

2π

∂

∂u
∆Ψ = (2K

[Q]
Γ − KQ) ⋆ Ǩ . (B.26)

For the third line in eq. (B.18) we find

∂

∂u

[
Ψ(x, y+

1 ) − Ψ(x, y−1 )
]

= ∓i

∫ 2

−2
dt

∂

∂t
KQy(u, t) log

Γ
[
1 + i

2g(v − t)
]

Γ
[
1 − i

2g(v − t)
] . (B.27)

where an overall “ + ” sign is for v < −2 and “ − ” for v > 2, respectively. Integrating by

parts, we get

1

2π

∂

∂u

[
Ψ(x, y+

1 ) − Ψ(x, y−1 )
]

= −KQy ⋆ K
[2]
Γ , (B.28)

Finally, we notice that for |v| > 2 the following identity is valid

1

2πi

∂

∂u
log

y+
1 − 1

x

y−1 − x

√
x2

y−1
y+
1

= −1

2
ǨQ(u, v) − 1

2
KQ(u − v) . (B.29)

Thus, for the last line in eq. (B.18) one gets

1

2πi

∂

∂u
log

Γ
[Q

2 − i
2g(u − v)

]

Γ
[Q

2 + i
2g(u − v)

]
y+
1 − 1

x

y−1 − x

√
x2

y−1
y+
1

= K
[Q]
Γ (u − v) − 1

2
ǨQ(u, v) − 1

2
KQ(u − v) . (B.30)

3Another interesting relation is KQ ⋆ K
[2]
Γ = K

[Q+2]
Γ , where integration is performed over the whole real

line.
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Combining everything together, we find

ǨΣ
Q =

1

2πi

∂

∂u
Σ̌Q(u, v) = −2KQy ⋆ K

[2]
Γ ⋆ Ǩ + (2K

[Q]
Γ − KQ) ⋆ Ǩ (B.31)

− KQy ⋆ K
[2]
Γ + K

[Q]
Γ − 1

2
ǨQ − 1

2
KQ .

We stress again that all the convolutions here are taken from −2 to 2. The kernels in-

volved in the last formula satisfy a number of magic properties, which lead to a significant

simplification of eq. (B.31). First, one has

KQ ⋆ Ǩ =
1

2
ǨQ − 1

2
KQ , 1 ⋆ Ǩ = −1

2
. (B.32)

These relations allow one to find

K
[Q]
Γ ⋆ Ǩ =

1

2
ǨQ − 1

2
K

[Q]
Γ +

1

2

∞∑

n=1

Ǩ2n+Q . (B.33)

Specifying the last expression for Q = 2, one gets

K
[2]
Γ ⋆ Ǩ =

1

2
Ǩ2 −

1

2
K

[2]
Γ +

1

2

∞∑

n=1

Ǩ2n+2 = −1

2
K

[2]
Γ +

1

2

∞∑

n=1

Ǩ2n . (B.34)

Applying the identities (B.32)–(B.34) in the first line of eq. (B.31), we find the following

simple result

ǨΣ
Q(u, v) = −KQy ⋆

∞∑

n=1

Ǩ2n +

∞∑

n=1

Ǩ2n+Q . (B.35)

We note that for numerical computations, the fastest algorithm consists in replacing the

infinite sums in the last formula by their integral representation

ǏQ =

∞∑

n=1

Ǩ2n+Q(u, v) = K
[Q+2]
Γ (u − v) + 2

∫ 2

−2
dt K

[Q+2]
Γ (u − t)Ǩ(t, v) . (B.36)
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